
Drabe e dré all a a e e a ell le e di ré le r^{μ} blar le r^{μ} a le r^{μ} a le r^{μ} a de r^{μ} : a c r^{μ} a a e ré le a ce r^{μ} a r^{μ} d

M. C ec ac \cdot P. R _ er⁴ \cdot S. K a _ e^{λ} \cdot K. P $^{\prime}$ b \cdot S. Hr⁴ \cdot D. B _ \cdot A. F^{λ} c \cdot H. P^{λ} er⁴ \cdot H. Abe e \cdot N. Br^{λ} ba _ e^{λ} \cdot A. N e I №d cr"

Tabel dy a set a set of a set a set

al parties of	2 • 1 • 4	، _{ما} پلا ب
	4م 55.36 14.	46.58 15.58
$(0, 1^2)$	4 م 32.86	30.38 4.20
	7.70 2.2	5.45 0.86
	7.5 ₅ 1.65	4
	6.3 4.3	1
(n)		1
فوريها الجحوار 🗧	5	1
5 14	2	
الاي + ، , با	4	
	2.7 0.	4.3 3.3
ι.	2.5	3.0
pille set a trip sa es	5.55 4. م	7.24 8.68
(<u></u> , 0–100) [•]	/	
J_ mu u ^e b_	0.88 0.50	1.14 1.05
	1.77 0.41	2.00 0.78
	2.01 0.58	ب 0.5 1 ابو. 1
	55.2 25.2	<i>, ,</i>
(z , 4, 9)	-0.13 0.60	4
Hill I stale at shi		4
(+ + + + + + + + - + - + -	2.60 0.74	3.22 0.52
	2. ,, 0.63	3.27 0.52
	2.48 0.58	0.57 1، 10.57
1		7
	2.34 0.66	2.23 0.60
	0.68 4 و.1	0.54 مر.1

 $\begin{array}{c} \mathbf{s} \left(\begin{array}{c} \mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\begin{array}{c} \mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s} \mathbf{m} \right) = & \mathbf{5} \\ \mathbf{s} \left(\mathbf{s}$

1 ę. a. e.

Experimental procedure (1^{10}) $(1^{1$

fMRI data acquisition 1.5

بالم في الم الم الم الم

Tabe2 ماغ ملاق بالاعلام المناقل المن

	د - احد				•]"	L			- •	Т. 						
	•	4	Z 🖕 _414	(1] ³)	•	4	Z 🍙 "el 6	(1 ³)	•	-	Z 🍙 _616 ⁰	(*] (*]		·	Z 🗭 diệ	- ²
┚┍╽╸ ╺╹╺ ╼╶╶┶╶╌┙╋		$3_{f} 0 -21$	3.44	150	1	-3 3 <i>f</i> -27	3.57	ک ر0	ł	-24 36 -21	4.22	575	9	6 12 -3	3.08 (🍙)	162
		48 - 5 0 48 - 12 0	4.57 3.42	108	,	-, 36 -24	3.2,	36	1	-36 27 -21	3.12	417	21	21 -3 27	3.26 ()	63
	1	-48 -15 -3 2.7 f	2.75	15	,	-, 36 -24	3.2 <i>5</i>	36					, ,	-21 -24 21	3.38 ()	55
	•		4			12 30 -18	3.11	111					15	18 3 24	3.20 ()	99
				-									3(30 -6 6	2. ₅ 8 ()	4815

(r 0.8) define the set of (r 0.6) (r

Dr⁴c r⁴

		L 		L J		الله الم مد الم ما			4 e F	
л т Т	z ه مارو (¹ ع)	¥ 4	z ه_شوه (¹ 3)	3) e L	z • -4 • (1 3)	Y 4	Z elq [©]	(<mark>\$</mark> ³)	Ч.	z , 10, 5
Sector 1.18 j3	3.18 م ^ع	18 63 6	3.26 12 f					1	-30-3-24 3.37 228	3.37 22
		, 45 –18	2. <i>5</i> 3 102							
				· -30 3,	-303_{f} , 3.80 120					
						$-126-33.5_{f}$) 210	3.556)	210	21 0 -18	3.01 48
, ,						$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.37 () 3.06 (•	123) 30		

 $\begin{array}{c} \mathbf{n}^{\mathbf{q}} & \mathbf{s} & \mathbf{s}^{\mathbf{q}} & \mathbf{t} & \mathbf{s}^{\mathbf{q}} & \mathbf{s}^{\mathbf{q$